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Astract: A p2p streaming system must be able to exploit the locality 
information between peers, in order to deliver a stream quickly to all peers with 
high level of bandwidth utilization. In this paper we propose a locality aware 
and balanced overlay for p2p live streaming which can adapt to the dynamic 
behavior of the participating peers and the underlying network. Our overlay is 
created and maintained through the use of two algorithms, called the placement 
and the swapping algorithm that we consider as the major contributions in this 
paper. These are responsible for the insertion of a node and the dynamic and 
distributed optimization of the overlay in order to reflect the underlying 
network. The proposed overlay is evaluated through extensive simulations that 
show that the bandwidth utilization of the peers and the set-up time are 
significantly improved through locality between peers. 
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1 Introduction 

P2P streaming is a real time application with strict delivery time constraints and 
very demanding in terms of the aggregate bandwidth required for the delivery of the 
stream to the participating peers. In general, a server generates a video stream at a 
given service rate which is then divided into blocks followed by their delivery to a 
small subset among the participating peers. As a final step, all peers exchange these 
blocks in order to reproduce the whole video stream. 

Peers involved in these systems, may have heterogeneous upload bandwidth 
capabilities while the average upload bandwidth capability of the participating peers 
constrains the maximum service rate of the video stream that can be delivered 
successfully to all peers [12]. An efficient P2P streaming system must be able to 
deliver a video stream with service rate as close as possible to the average upload 
capability of the participating peers with the smallest possible delay, called setup 
time. With the term setup time we define the time interval between the generation of a 
block from the origin server and its distribution to every peer in the system. 



Several approaches that have been recently proposed for creating P2P streaming 
systems may fall into two categories.  

The first is based on a formation of forests of trees whereby each node is a leaf in 
every tree but one. Blocks are assigned equiprobably into a number of stripes equal to 
the number of the formed trees. Each tree distributes (pushes) one stripe by 
propagating each one of its blocks from parent to its children. In this category blocks 
are pushed according to the overlay topology. SplitStream [4] is a distributed 
implementation of this approach that is based on a locality aware DHT called Pastry 
[10]. SplitStream and systems alike have the advantage of being topologically aware 
(trees are formed according to the network distance between nodes) leading to small 
setup time as the propagation of a block from the root of the tree to the leaf nodes is 
done through nodes which are physically close in the underlying network. However 
these systems suffer from two main drawbacks: a) they don’t take into account the 
heterogeneous upload capacities of the peers [17], and b) they can’t cope up with the 
dynamic behavior of the participating peers as well as the underlying network as 
observed in commercial P2P streaming systems [18],. When a peer leaves the overlay, 
the path between it and its descendants is broken resulting in idle descendants during 
the reconstruction phase of the tree. 

The second category described in [2],[12],[15]. Each node maintains connections 
with a relatively small number of nodes which are considered as its neighbors in the 
overlay. The overlay is constructed randomly or according to the upload capacities of 
the nodes that participate in it. Blocks that are generated by a server have playback 
deadlines. Each peer exchanges and maintains a number of lists (buffers), one per 
neighbor. Each one of these buffers contains those blocks of its neighbor that their 
playback deadline has not expired yet. To this end, a peer is capable at any time of 
making a decision about which block should be transmitted to which neighbor. This 
decision process is implemented by a scheduler running in every node. The 
characteristic of these systems is that the block transmissions are agnostic to the 
overlay topology. 

Due to their architecture the main advantage of them is their flexibility which 
allows them to take advantage of the heterogeneity of the participating peers and deal 
with the dynamic behavior of the system leading to higher levels of bandwidth 
utilization. However, these systems can’t exploit the network proximity among the 
peers that exchange blocks. This means that the time required for a block to be 
transferred from one node to another and hence the required time for all nodes to 
acquire the block (setup-time) could reduced if the overlay exploits the locality 
between peers. Another drawback of overlays agnostic to locality is that buffer 
exchanges between neighbors performed with high network latency. This effect leads 
duplicate block transmissions and so to wasted upload bandwidth. 

The primary contribution of this paper is the creation of an overlay where each 
node discovers and exchanges blocks with the nodes physically close to it in the 
underlying network. The physical network distance is captured by means of a novel, 
locality aware structured P2P graph which is reconfigured dynamically according to 
the latencies between nodes in the underlying network. This overlay can 
approximately be seen as a self-organized d-dimensional grid where the position of 
each node in the overlay reflects its position in the underlying physical network. 
There are two algorithms that every node runs. The first is the placement algorithm 



that each node runs only once when it enters the system and is responsible for finding 
a suitable neighborhood of the overlay for this node. The second one, called the 
swapping algorithm, aims at the distributed and dynamic optimization of the 
neighborhoods in order to reflect the underlying network. 

The rest of this paper is organized as follows. In section 2 we present our 
proposed overlay and we describe in detail the placement and the swapping algorithm 
in Section 3 we describe briefly the scheduler that we use in order to evaluate our 
overlay and in Section 4 we evaluate its performance. At last in section 5 we conclude 
and we point our future work. 

2   The proposed system 

2.1.   Locality Aware P2P Overlay Architecture 

For creating a locality aware P2P overlay where each node has as neighbors the 
nodes in the underlying network that are physically close to it, we have used 
structured P2P overlay, in particular we have use the neighbor table maintenance 
mechanism from CAN [1], CAN is a distributed self-organized overlay, which 
intuitively approximates a d-dimensional grid. In CAN each node holds a random 
portion of a d-dimensional space. It offers three major advantages that explain our 
architectural decision to use it as a substrate for our streaming system. The first is that 
is guarantees that each node will have at least 2*d incoming neighbors and so at least 
2*d nodes will provide blocks to it. The second is the balanced properties of the 
overlay (are demonstrated in the evaluation section) that means that there are no 
nodes with a large number of outgoing neighbors and so as we will see later that 
feature reduces the control overhead of live streaming. The third and most important 
feature of this overlay is that between any two nodes there are at least 2*d paths 
where in each one a different set of nodes participates. Given this attribute and by the 
creation of the appropriate scheduler no point of the graph is a bottleneck in live 
streaming. At last offers a mechanism to formulate our distributed optimization 
algorithm as we will analyze in section C. 

In contrast, locality aware DHTs proposed so far, lead to overlays where nodes 
have highly unbalanced number of neighbors [8] and so are unsuitable to be used as 
overlays in P2P streaming. 

In order to reflect the underlying network in the d-dimensional space of CAN, 
thus capturing locality, we have developed two algorithms. The first, influenced from 
[16], is called placement algorithm. This is responsible for navigating and placing 
each node that enters our system next to its closest node in the physical network. The 
second called swapping, is responsible for the distributed and dynamic optimization 
of the overlay according to the network latencies between nodes. These two 
algorithms constitute the extension of the original CAN leading to a locality aware 
overlay called L-CAN. 

2.2. The Placement Algorithm 



The placement algorithm is a distributed algorithm responsible for finding a 
suitable neighborhood for each node which enters the system. Its high accuracy is not 
a critical issue, because we do not rely entirely on this algorithm to provide an 
optimal placement of the nodes (neighbors that are also physically close to each other) 
in the L-CAN. This is the job of our swapping algorithm that is responsible for an 
optimal dynamic and stable solution. 

Each node, already part of the overlay, must be capable of navigating each new 
node closer to its final position. To do so, each node i in the L-CAN must maintain 
some kind of information about the structure of the overlay. The first source of 
information comes from the neighbors of i as through the exchange of control 
messages with them, node i can get an estimate of the corresponding STTs. In 
addition to communicating with its neighbors, each node communicates with a 
number of nodes Ri uniformly spread in all d dimensions of L-CAN (Figure 1). We 
call these nodes ring nodes. 

 

 
 

Fig. 1. Node X0 is already placed in a two dimensional CAN. Its neighbors are nodes 
{X1.1, X1,2, X2.1, X2.2} and communicates with one additional node in each dimension 
(Ri=1), namely, its ring nodes {R1,R2} 

Every node N, which is already placed in L-CAN, has a structure (called 
topology_list(N) ) that holds the values of the estimated STTs with its 
neighbors and its ring nodes. Methods and algorithms which provide STT estimates 
through many RTT measurements are described analytically in [21]. 

When a node X is to be inserted in our system it makes use of two lists. The first 
one, called closer_list, contains those nodes which our placement algorithm has 
found upon completion of an iteration to be closer to node X up to a maximum 
number closer_num. The second one, called check_list, is used and updated at 
every step of the placement algorithm in order to infer from the topology_list of 
those nodes in the check_list additional nodes that happen to be close to X. The 
maximum size of check_list is set to check_num. (Figure 2). 

In order to bootstrap the placement algorithm, the new node X randomly selects a 
node N already in the L-CAN and places it in both lists. Then, the new node performs 
the following iterative steps until its closer_list remains the same for a number 
of stop_check steps. 



For each node Ni in X’s check_list the new node X takes a pre-defined 
number of nodes (cl_num) from Ni’s topology_list which are potentially 
closer to X. This is done by calculating the absolute difference between the STT from 
Ni to X and the STT from Ni to the node which was present in Ni’s topology list 16. 
Then X probes these cl_num*check_num nodes and if it finds that some of these 
nodes are closer to X than those in its closer_list, it substitutes those nodes in 
the closer_list with the new nodes with smaller STTs. Finally, check_list 
is assigned the contents of the closer_list and the process is repeated until 
convergence. 

When the algorithm terminates, the first node in the closer_list is the 
nearest to X in the physical network. The pre-defined numbers closer_num, 
check_num, cl_num and stop_check define the trade-off between accuracy and 
speed of convergence of our placement algorithm. 

 

 
 

Fig 2. At each step 4 actions are performed. The data structures which the new node X 
maintains during its entry in the DHT. Ni denotes the nodes which X asks at each step. 

After the discovery of the physically closest node to X, node K, X sends to K a 
request for insertion. At this point we face another challenge: to create a balanced 
overlay, namely, the number of neighbors of every node must be similar in size. To 
this end, X checks whether a neighbor of K has a zone bigger than K’s zone. If such a 
neighbor exists then the new node will be inserted in the overlay between K and the 



neighbor of K with the bigger zone, otherwise, it will be inserted in the zone of K. By 
doing this we still ensure that  nodes K and X will also be neighbors in L-CAN, while 
we avoid the possibility of a node having a relatively big zone compared with another 
one close to it. In this way the requirement for a balanced overlay in terms of the size 
of neighbors is guaranteed. 

2.3.   The Swapping Algorithm 

The swapping algorithm, aims at keeping L-CAN dynamically updated and 
optimized with respect to locality as opposed to the placement algorithm which is 
responsible for maintaining a balanced overlay during initial node insertion.  

Two events may trigger the need for such a reconfiguration: a) the arrival or 
departure of a node, and b) any change in network conditions. Both events result in 
new STT values maintained by L-CAN, which, in turn, invokes the swapping 
algorithm to rearrange the “neighborhoods” in L-CAN. 

The L-CAN swapping algorithm is based on a function, we call energy function, 
denoted as E(i,j), where i is a node in L-CAN and j is the zone that this node occupies, 
i  where N,Z the sets of the nodes and the zones in L-CAN respectively. 
Additionally each zone j in L-CAN is adjacent with a set of zones noted as Zneigh(j) 
and the nodes that hold these zones defined as Neigh(i). Accordingly, the energy 
function of a node i that holds a zone j is defined as: 
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This small subset Neigh(i) of N is the nodes that i uses in order to exchange blocks. If 
we assume that links between neighbors are used with equal probability in streaming 
the performance of the streaming application is based on the metric: 

 

]                                                                    (2) 

 

If we minimize Eall the overlay would minimize the average latency and consequently 
it would also minimize the average probability for duplicates The algorithmic 
complexity of such problem is O(|N|!) provided that we apply an exhaustive search of 
all possible combinations among  all nodes and zones of L-CAN. To this end, there is 
a need for a distributed algorithm that will minimize Eall or at least it will converge in 
a good sub-optimal value for Eall. So we propose an algorithm that dynamically 
rearranges “neighborhoods” in L-CAN. Accordingly our swapping algorithm starts 
from a node that we called as the initiator. In a swapping process the nodes that 
participate is the initiator and all of its neighbors. The goal of our swapping algorithm 
is an optimal assignment between these nodes and their zones that we denote with the 
set Nswap and Zswap respectively. As optimal assignment we define the assignment 
that results in the minimum sum of energy of the participating nodes in the swapping 
process. In order to reduce the complexity of such an assignment that is O(|Nswap|!) 
we formulate this process as a linear integer programming problem that solved with a 



polynomial complexity. In the rest of this section we describe this formulation in 
detail. 

 
 

Fig. 3. A two-dimensional CAN where nodes {X0, X1, X2, X3, X4} perform a concurrent 
swapping, where X0 is the initiator. 

 
More specifically, Figure 3 illustrates an example of swapping among 5 

neighboring nodes, Nswap={x0,x1,x2,x3,x4} that occupy zones Zswap 
={p0,p1,p2,p3,p4}  respectively, in a 2-dimensional L-CAN. x0 is considered the 
initiator of a swapping process.  

Initially, nodes x0-x4 exchange with each other the set of their own neighbors. 
For instance, node X1 and X3 exchange Neigh(x1) = {a1,a7,a8,x0}, and Neigh(x3) = 
{a3,a4,a5,x0}, respectively. After all nodes that belong to Nswap have been notified 
of all these neighbor sets in each position, each one measures its STT in the nodes that 
presented in every set Neigh(i) where i Nswap and send the measurements to the 
initiator as this is the node that carries out the execution of the swapping algorithm. 
Now the initiator is capable of calculating the optimal assignment between nodes 
Nswap and positions Zswap. In order to formalize the swapping process we note now 
as Zneigh(i) the set of nodes that are adjacent with a zone i and do not participate in 
the swapping process (Ex. Zneigh(P2) ={a1,a2,a3}).For the calculation of energy in 
every zone except the central one (P0 in our example) we use the set Zneigh this set 
excludes the node that will be moved to the central position as it is unknown yet. For 
instance, the energy of x1 to position P2 is calculated for the needs of the swapping 
as: 

E(x1,p2)=Stt(x1,a1)+Stt(x1,a2)+Stt(x1,a3)                                                                 (3) 

The problem with (3) is that we do not know which of the x0, x2, x3, and x4 
moves to the central position P0. Four outcomes are possible, but we will describe 
later how we tackle this problem. 

The case where a node moves to the central position P0, is simpler as each node 
of the calculation of its energy uses the set Nswap that participate in the swapping 
process except itself. That’s because as we observe from the Figure 3 if this node 
moved to the central position will have as its neighbors these nodes. Again, if X1 
moves to P0 its energy function becomes: 



E(x1,p0)=Stt(x1,x0)+Stt(x1,x2)+Stt(x1,x3)+Stt(x1,x4)                                              (4) 

 We are now able to determine the energy of each node in a more abstractive 
way in order to formulate the swapping algorithm. In order to find the optimal 
assignment of the nodes  and their zones  we have to calculate the 
energy of each node in each potential position. 

, 0 ∑ , |  ,| |
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With j0 we note the node that will be swapped to the central position after the 
swa

ill take
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While the selection of a node for the other positions k determines a factor: 
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After these calculations in order to perform the swapping process we want to 
min

∑ ∑ ,| | ,                                                                                (9) 
 

here a(i,j) 0,1  and for each node i and each position j holds that: 

, 1 and ∑ , 1                                                     (10) 
 

These are the constraints of the problem and intuitively express that each node 
will

 So for the zone of the initiator, noted as position 0, the node i that will be 
swapped there will have energy: 
 

                                                  (5) 
 

For the other zones k {Zswap-0} the energy of the potential node i that will be 
swapped there is: 
 

]                                     (
 

pping process. As we observe the first term of this equation , 0  is 
independent from the position k and it depends only in the node that w  the 
position of the initiator that noted position 0. If we examine these factors we will 
observe that there will be |Nswap|-1 of them and each one expresses the Stt between 
the node that will placed in zone 0 and each node except it that belongs to Nswap. If 
now we observe E(i,0) we will find that it is equal with the sum of these factors as we 
observe from the equation 5. After this observation we have prove that by the 
selection of a node for the central position we determine a factor: 
 

| |
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 be placed in exactly one position and also in each position j will be placed 
exactly one node. As the nodes and the positions are equal this is an integer linear 
programming problem always feasible. After its solution for each a(i.j)=1 node i will 



be placed in position j. If it will moved in the central position t will take as neighbors 
the set {Nswap–i} and in the other positions j the set Zneigh(j) and the node that will 
move to the central position. This is a well know problem of linear programming and 
we refer to [20] for its solution. 

There is an analytical proof that our algorithm converges but due to the restricted 
spa

3   P2P live streaming systems 

Without loss of generality we assume that in a P2P streaming system there is a 
boo

me of its 
gen

 
 

Fig.4. Snapshot of a buffer in a node with the stat e blocks. 

ce we just describe that each time that the algorithm is executed to a neighborhood 
the energy of this neighborhood is reduced and so the total energy of the system. As a 
result of this property and the fact that the total energy is a positive number the whole 
system will converge to an assignment between nodes and positions will the low total 
energy and as we observe for our simulations it converges to a very attractive 
suboptimal. 

tstrap node which is used for the entrance of the nodes in the system while it acts 
as a source for providing the video stream. Furthermore, the video stream is divided 
into blocks. The block size depends on the service rate, say μ (measured in bps that 
the video playback requires), and the number of blocks in which the bootstrap node 
divides one second of video. We define this number as Nb blocks/sec representing also 
the frequency of new blocks generated by the source. So each block is generated 
every 1/Nb seconds at the bootstrap node, with a size equal to Lb=μ/Nb bits. 

Every block is also associated with a time stamp indicating the ti
eration. All peers reproduce (play) the video with a delay called set-up time which 

we denote it as ts. As mentioned previously, setup time is the time that elapses from 
the generation of a block at the source until its distribution (propagation) to every 
node in the P2P system. Accordingly, at every time instant every peer plays the block 
that was generated ts times before in the origin server, provided of course that this 
block has eventually reached its destination. 

 

es of th
 



During this setup time a number of blocks have been generated, equal to Nb*ts, 
the 

node upon reception of a new block, propagates this 
info

4.   Evaluation 

For the evaluation of our P2P streaming system we have used OPNET Modeler 
[24

resent 
the 

strate the performance of our overlay in live streaming 
com

first of which will be played by every node after ts seconds. Therefore, at every 
instant every node is required to keep track of all Nb*ts blocks generated within a 
sliding window of ts seconds. For this reason every node maintains a buffer of size 
Nb*ts that holds the state of these blocks. Two states are of interest: received blocks 
and missing blocks (not delivered yet). Figure 4 provides a snapshot of the states of 
blocks of a buffer in a node. 

More specifically, each 
rmation to all of its neighbors. Therefore, every time that a node wants to transmit 

a new block knows the blocks that it has and the blocks that their neighbors have. A 
scheduler, described in [2], proposes the transmission of a block to the neighbor that 
misses the largest number of blocks among those that the transmitting node has. 
According to it, each node i has to decide which neighbor j must serve first, by 
calculating the difference(i,j) of the blocks that each neighbor j misses and are present 
in node i. The node with the largest difference is the one selected for block 
transmission while ties are resolved arbitrarily. Finally, the block to be transmitted is 
selected randomly with a uniform distribution.  

] in order to avoid the imperfections of a custom made simulator. We have tested 
our proposed system under various underlying network topologies. Here we present 
its performance based on a topology from [5], where the provided round trip time 
measurements were gathered using the King method between globally distributed 
DNS servers. We have opted for this particular real data set in order a) to avoid 
inaccurate conclusions which a network model may introduce, and b) to use a real 
topology of globally distributed nodes and so have a fair benchmark for a locality 
aware overlay. In the rest of this section we present a system with 2000 nodes.  

Before examining our system and its performance in live streaming, we p
results that show the cumulative density function of the number of neighbors that 

each node has for a random mesh and for our overlay. As we observe in Figure 5 our 
overlay is more balanced than a mesh although the nodes are placed according to their 
position in the underlying network. At this point we want to clarify that we don’t 
claim that nodes have similar zone sizes (ex. In network regions with high density of 
nodes the zones of LCAN may be smaller) as we don’t want to use L-CAN as a DHT 
in order to store keys in it. In contrast we want to have a balanced overlay in terms of 
the neighbors that each node has. We achieve this goal due to our placement 
algorithm as described earlier. 

Now in Figure 6 we demon
pared with the performance of a randomly created mesh. We examine two 

scenarios: a) all the participating nodes have homogeneous upload capacities, and b) 
the upload capacities of the nodes conform to those in [3] that have been collected 
from users of a real P2P system and they are heterogeneous. 
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Fig 5. Cumulative density function of the number of neighbors that each node has in a random 
mesh (black line) and in L-CAN (red line). 
 

 
 

Fig 6a. Maximum achievable service rate (as a percentile of the average upload 
bandwidth) of each system under various setup time intervals. Nodes contribute equal upload 
bandwidths. 

 
Based on these two scenarios we have evaluated three different systems. The first 

system, denoted as MD, is a mesh overlay where each node has 10 neighbors, while 
the exchange of blocks among nodes is performed according to the most deprived 
node scheduler [2] as described earlier. The second system, denoted as LD, uses the 
same scheduler as MD, but it relies on our topology aware overlay L-CAN with 5-
dimensions (each node has approximately 10 neighbors) which replaces the mesh 



overlay. In the third system, denoted as LS, we have maintained the L-CAN overlay 
and we have substituted the scheduler in MD with our own. 

 

 
Fig 6b. Maximum achievable service rate (as a percentile of the average upload 

bandwidth) of each system under various setup time intervals. Nodes contribute heterogenous 
upload bandwidths. 

 
This new scheduler we propose, though simple, exploits in its logic the existence 

of a locality aware overlay and in particular every node’s likely network position 
reflected in the L-CAN. According to it, each node keeps an incremental list of its 
neighbors according to STT between them. The probability with which each one of its 
neighbor is selected for a block transmission is proportional to its rank in the list. 
Figure 6 shows the ratio between the maximum achievable service rate that each 
system can deliver and the average upload bandwidth of the participating nodes, for 
various setup time values given a constant rate for block generation (Nb=10 
blocks/sec). For the first graph we have used homogenous upload capacities whereas 
the later is based on heterogeneous. Inspecting the two graphs in figure 6, we observe 
that the same performance trend emerges from either case i.e. homogeneous and 
heterogeneous upload capacities. Furthermore, all systems perform slightly worst in 
case of heterogeneous upload capacities. 

As predicted by our analysis applying a locality aware overlay, L-CAN, results in 
a significant increase in the achievable service rate (LD), as opposed to a mesh 
overlay (MD), because of the smaller STT values that exist between the neighbors in 
L-CAN. Further improvement especially for not very small set-up time values is 
obtained when we apply our scheduler in (LDS) as we see observe from the blue line 
in figure 6.  

Finally, the control overhead of our scheduler is trivial. Every time that a node 
receives a new block it sends to all of its neighbors a control packet with the contents 
of its buffer. The frequency of this transmission is equal to Nb by the definition of the 



scheduler. Additionally the size of the buffer is ts*Nb and is modeled with one bit of 
information for each block (ex. One for its presence and zero for its absence). So the 
control bandwidth that is consumed in each node in order to update the other nodes 
for the new block arrivals is approximated by: 

 
C.B.=(Header_size+ts*Nb)*Nb*Number_of_neigh 
 

where Header_size+ts*Nb is the size of each control packet Nb is the frequency that 
this is transmitted and Number_of_neigh is the number of neighbors in which the 
control packets are send. By the value of Nb=10 blocks/sec as, ts=5sec and 
Number_of_neigh=10 the control bandwidth that consumed in each node is has a 
value around 30 kbps and its independent from the upload capacities. This means that 
with higher upload capacities of peers the overhead that is consumed from the buffer 
exchange lowers as a percentage of the upload bandwidth. 

5.   Conclusions and future work 

As we have observed though our evaluation L-CAN greatly improves the set-up 
time and the bandwidth utilization in live streaming. Additionally combined with our 
previous work in [22] enables locality in CAN and the whole system can be used in 
other applications such as multi-attribute range queries. Furthermore we will modify 
and apply our algorithms in other overlays in order two evaluate them in these. 

In live streaming our future work is focused in two major areas. The first is the 
creation of a sophisticated scheduler that exploits locality and the information that is 
infused in any node during the buffer exchanges by selecting the appropriate block for 
transmission and not only the appropriate node. The second is the selection of the 
appropriate number of neighbors and the adjustment of the block size in order to 
further improve the performance of our system. At last we plan to evaluate our system 
in dynamic network conditions to demonstrate its adaptive behavior. 
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